Системы искусственного интеллекта

Интеллект — это мыслительные способности человека. Отдельные интеллектуальные способности человека могут быть воспроизведены в технических средствах (в том числе и в автоматах) путем создания систем искусственного интеллекта.

Искусственный интеллект (ИИ) — это свойство автоматических и автоматизированных систем брать на себя отдельные функции человеческого интеллекта, т. е. выбирать и принимать оптимальные решения на основе ранее полученного опыта и рационального анализа внешних условий (воздействий). Искусственный интеллект (англ. Artificial intelligence) — это искусственная система, имитирующая решение человеком сложных задач, связанных с его жизнедеятельностью, это направление научных исследований, сопровождающих и обусловливающих создание систем искусственного интеллекта^[1].

Наибольшее развитие получили системы искусственного интеллекта, построенные на базе средств вычислительной техники и предназначенные для восприятия, обработки и хранения информации, а также формирования решений по целесообразному поведению в различных ситуациях, воспроизводящих (модулирующих) состояние некоторой среды (мира, природы, общества, производства и т. п.).

Современные системы искусственного интеллекта ориентированы на базы знаний и экспертные системы. Системы искусственного интеллекта — изучение того, как компьютеры могут «думать».

Область искусственного интеллекта имеет более чем сорокалетнюю историю развития. С самого начала в ней рассматривались весьма сложные задачи, которые наряду с другими до сих пор — предмет исследований: автоматические доказательства теорем, машинный перевод (автоматический перевод с одного естественного языка на другой), распознавание изображений и анализ сцен, планирование действий роботов, алгоритмы и стратегии игр. При этом в большинстве случаев заранее неизвестен алгоритм решения задачи. Теорией явно не определено, что именно считать необходимыми и достаточными условиями достижения интеллектуальности. Обычно к реализации интеллектуальных систем подходят именно с точки зрения моделирования человеческой интеллектуальности. Таким образом, в рамках искусственного интеллекта различают два основных направления:

- символьное (семиотическое, нисходящее), основанное на моделировании высокоуровневых процессов мышления человека, на представлении и использовании знаний;
- нейрокибернетическое (нейросетевое, восходящее), базирующееся на моделировании отдельных низкоуровневых структур мозга (нейронов).

Следовательно, сверхзадача искусственного интеллекта — построение компьютерной интеллектуальной системы, которая обладала бы уровнем эффективности решений неформализованных задач, сравнимым с человеческим или превосходящим его. В качестве критерия и конструктивного определения интеллектуальности предложен мысленный эксперимент, известный как тест Тьюринга, приведенный А. Тьюрингом в 1950 г. в статье «Вычислительные машины и разум» (Computing machinery and intelligence) для проверки, является ли компьютер разумным. Тьюринг предложил тест, чтобы заменить бессмысленный, по его мнению, вопрос «Может ли машина мыслить?» на более определенный.

Нейрокибернетика. Это научное направление, изучающее основные закономерности организации и функционирования нейронов и нейронных образований. Главный метод нейрокибернетики — математическое моделирование, при этом данные физиологического эксперимента используются в качестве исходного материала для создания моделей.

Одно из наиболее перспективных направлений нейрокибернетики — на стыке психологии, биологии и информатики — моделирование на основе нейронных сетей. Нейрокибернетика ориентирована на аппаратное моделирование структур, подобных структуре мозга. Физиологами давно установлено, что основа человеческого мозга — большое количество (до 10²¹)

связанных между собой и взаимодействующих нервных клеток — нейронов. Поэтому усилия нейрокибернетики были сосредоточены на создании элементов, аналогичных нейронам, и их объединении в функционирующие системы. Эти системы принято называть нейронными сетями, или нейросетями. Заметны тенденции к объединению этих частей вновь в единое целое.

Итак, развились пять взаимосвязанных областей: *естественные языки, робототехника, системы ощущений (системы зрения и слуха), экспертные системы и нейронные сети.*

Для работы с естественными языками необходимо создание систем, которые переводят обычные человеческие инструкции в машинный язык.

Исследование систем ощущений направлено на создание машин — роботов, которые могут «видеть» и «слышать» и соответственно реагировать.

Робототехника в большей степени относится к промышленности, военному делу, космическим исследованиям. Робот — это автомат, имитирующий своим поведением, выполняемыми функциями, а иногда и внешним видом человека. Различают роботы с жестко заданной программой действия, управляемые человеком-оператором, и роботы с искусственным интеллектом (рис. 6.2).

Экспертная система — система искусственного интеллекта, включающая знания об определенной слабо структурированной и трудно формализуемой узкой предметной области и способная предлагать и объяснять пользователю разумные решения. Экспертная система состоит из базы знаний, механизма логического вывода и подсистемы объяснений.

Экспертные системы используют логику принятия решений человеком. Функции эксперта при решении задач из некоторой предметной области возникли как практический результат в применении и развитии методов искусственного интеллекта.

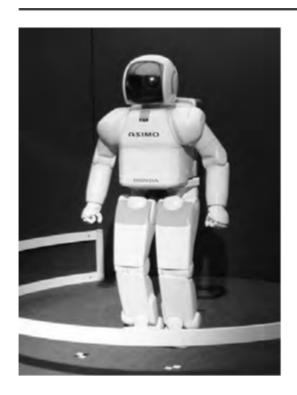


Рис. 6.2. Примеры роботов, обладающих искусственным интеллектом

Экспертные системы выдают советы, проводят анализ, дают консультации, ставят диагноз. Практическое применение экспертных систем на предприятиях способствует эффективности работы и повышению квалификации специалистов.

Главное достоинство экспертных систем — возможность накопления знаний — формализованной информации, на которую ссылаются или используют в процессе логического вывода, и сохранение их длительное время. В отличие от человека к любой информации экспертные системы подходят объективно, что улучшает качество проводимой экспертизы.

Существуют два основных варианта использования экспертных систем, соответствующие социологическим концепциям явной и скрытой функций. Явная функция экспертной системы должна обеспечивать с помощью компьютера компетентность (специальные знания) человека-эксперта. Например, диагностаровать болезнь, воссоздавать химическую структуру, разведывать места добычи полезных ископаемых или решать другие подобные задачи. Они достаточно удобны в работе, а кроме того, имеют возможность объяснять свои действия и мнения так, как это мог бы сделать человек-эксперт. И наконец, подобно человеку они способны даже научить кого-то, как проводить экспертизу.

Нейронные сети. Нейронные сети устроены по аналогии с нервной системой человека, но фактически используют статистический анализ, чтобы распознавать модели из большого количества информации посредством адаптивного изучения. Нервная система и мозг человека состоят из нейронов, соединенных между собой нервными волокнами. Нервные волокна способны передавать электрические импульсы между нейронами. Процессы передачи раздражений от нашей кожи, ушей и глаз к мозгу, процессы мышления и управления действиями — все это реализовано в живом организме как передача электрических импульсов между нейронами (рис. 6.3).

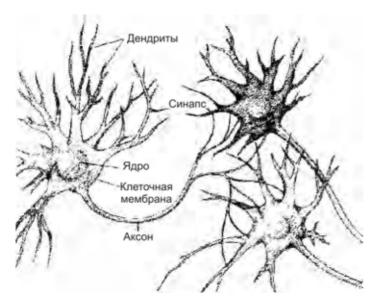


Рис. 6.3. Передача импульса между нейронами

Для обучения нейронной сети требуются обучающие данные, которые должны отвечать свойствам представительности и случайности или последовательности. Все зависит от класса решаемой задачи. Такие данные представляют собой ряды примеров с указанием для каждого из них значения выходного параметра, которое было бы желательно получить. Действия, которые при этом происходят, можно назвать контролируемым обучением: «учитель» подает на вход сети вектор исходных данных, а на выходной узел сообщает желаемое значение результата вычислений.

Искусственная нейронная сеть (ИНС, нейросеть) — это набор нейронов, соединенных между собой. Как правило, передаточные функции всех нейронов в сети фиксированы, а веса являются параметрами сети и могут изменяться.

Важно отметить, что вся информация, которую сеть имеет о задаче, содержится в наборе примеров.

Применение нейросети. После того как сеть обучена, можно применять ее для решения полезных задач. Важнейшая особенность человеческого мозга состоит в том, что, однажды обучившись определенному процессу, он может верно действовать и в тех ситуациях, в которых не бывал в процессе обучения. Например, мы можем читать почти любой почерк, даже если видим его первый раз в жизни. Также и нейросеть, грамотным образом обученная, может с большой вероятностью правильно реагировать на новые, не предъявленные ей ранее данные.

Примером такой задачи служит медицинская диагностика, где сеть может учитывать большое количество числовых параметров (энцефалограмма, давление, вес и т. д.). Классификация предприятий по степени их перспективности — это уже привычный способ использования нейросетей в практике западных компаний. При этом сеть также применяет множество экономических показателей, сложным образом связанных между собой. Конечно, «мнение» сети в этом случае нельзя считать окончательным.

Нейросетевой подход особенно эффективен в задачах экспертной оценки по той причине, что он сочетает способность компьютера к обработке чисел и способность мозга к обобщению и распознаванию. Нейросеть позволяет обрабатывать огромное

количество факторов (до нескольких тысяч) независимо от их наглядности. Помимо задач классификации, нейросети широко используются для поиска зависимостей в данных и кластеризации. Нейросети применяют в следующих случаях, например:

- оценить коммерческие заявки на получение ссуды;
- разобрать почерк на кредитной карте;
- прочитать заполненные от руки налоговые формы;
- обнаружить газовые и нефтяные месторождения под поверхностью земли;
- распознавать мошеннические подделки кредитных карточек;
- сокращать список рассылки журналов и каталогов по почте, исключая тех, кто маловероятно закажет их снова.

Нейроинформационные технологии. Ядро нейроинформаци- онных технологий — представление о том, что естественные биологические нейроны можно моделировать довольно простыми искусственными автоматами, а вся сложность мозга, его гибкость в обработке различного рода информации и другие его важнейшие качества определяются связями между нейронами. Каждая связь представляется как совсем простой элемент, служащий для обмена сигналами.

С середины 1980-х гг. непрерывно растет интерес к созданию специализированных устройств, получивших название нейрокомпьютеров.

Нейрокомпьютер — компьютер, созданный на основе нейросетей. Существует большое разнообразие нейрокомпьютеров — от специализированных интегральных схем, в которые вводится заранее определенная структура нейронной сети, до универсальных программируемых сопроцессоров к вычислительным машинам, на которых можно реализовать модель любой нейронной сети. Имеется также и целый ряд промежуточных типов нейрокомпьютеров с той или иной степенью специализации. Особенность нейрокомпьютеров — возможность сформировать стандартный способ решения многих нестандартных задач. Вместо программирования в нейрокомпьютерах применяются различные процедуры обучения.

Анализ зарубежных разработок нейрокомпьютеров позволил выделить основные перспективные направления современного развития нейроинформационных технологий: нейросетевые экспертные системы, СУБД с включением нейросетевых алгоритмов, обработка изображений и сигналов, управление динамическими системами, и в том числе сетями связи, управление финансовой деятельностью — это автоматизация процессов распознавания образов, адаптивное управление, аппроксимация функционалов и т. д. С помощью нейроинформационных систем можно управлять телекоммуникационными сетями, проводить динамичную диагностику и терапию широкого круга заболеваний, предсказывать показатели биржевого рынка, выполнять распознавание звуковых сигналов, создавать самообучающиеся системы, способные управлять оружием и оценивать ситуацию, складывающуюся на поле боя.

Главное в развитии нейроинформационных технологий — интеллектуализация вычислительных систем, придание им свойств человеческого мышления и восприятия.

Потенциальные сферы применения нейротехнологий — все плохо формализуемые предметные области, в которых классические математические модели и алгоритмы оказываются малоэффективными по сравнению с человеком, демонстрирующим успешное решение задач. К таким областям относятся: обработка изображений, реализация ассоциативной памяти, системы управления реального времени, распознавания образов и речи, системы безопасности, выявление профилей интересов пользователей Интернета, системы анализа финансового рынка и т. д. Актуальность исследований искусственных нейронных сетей подтверждается многообразием их возможных применений.

Нейронные семиотические сети основаны на моделировании функций высшей нервной системы человека. Это направление получит исключительное развитие в XXI в.

Нейропакетом называется программная система, эмулирующая среду НК на обычном компьютере. Классификация нейропакетов:

- НП для разработки других НП (инструментарий построения НП);
- универсальные НП, под которыми понимается возможность моделирования искусственной нейронной сети разной структуры и с разными алгоритмами обучения;
- специализированные НП, использующие нейроны сложной функциональности и включающие специализированные средства для:
 - обработки изображений:

- распознавания образов;
- распознавания рукописных и печатных символов;
- управления динамическими системами;
- финансового анализа и т. д.;
- нейронные экспертные системы;
- пакеты генетического обучения искусственной нейронной сети;
- пакеты нечеткой логики, использующие искусственную нейронную сеть;
- интегрированные, применяющие искусственную нейронную сеть.

Существует развитая система критериев сравнения универсальных НП, отражающая интересы начинающих и опытных пользователей, а также профессиональных разработчиков нейропакетов.

Нейросетевой детектор лжи. В следственной практике МВД России в настоящее время применяются полиграфы, система датчиков которых измеряет до десяти параметров, таких как пульс, артериальное давление, температура тела, частота дыхания, электросопротивление участков кожи и др. Эти параметры в реальном времени отображаются на экране монитора в виде пульсирующих кривых. Заключение о честности подследственного дается компьютерной программой, анализирующей получаемые кривые с помощью набора правил, которые обобщают исследования психологов и опыт наблюдений.

Ненадежность заключения, производимого таким детектором лжи, обусловлена тем, что к разным людям, по-разному реагирующим на стрессовые ситуации, применяется одна и та же система решающих правил, поэтому помимо компьютерной программы полиграфологи вынуждены применять систему дополнительных, весьма трудоемких и кропотливых приемов.

Нейросетевые технологии позволяют по-новому подойти к проблеме построения детектора лжи. Они дают возможность создать компьютерную программу, которая настраивается на каждого конкретного человека и учитывает индивидуальные особенности его организма.

Принципиально задача выявления признаков лжи с помощью нейросетевых технологий ничем не отличается от задач диагностики экспертных систем. Выборка обучающих примеров формируется в результате предварительных бесед следователя с подследственным, в ходе которых следователь задает вопросы, ответы на которые ему известны. Заключение будет объективно учитывать индивидуальные особенности организма допрашиваемого.

Приведенный способ создания настраиваемого детектора лжи обладает недостатком, состоящим в трудоемкости формирования обучающей выборки. Поэтому его рекомендуют для ответственных случаев, когда затраты на длительные предварительные беседы следователя с подследственным оправданны.

Разрабатываются также нейродетекторы лжи, настроенные на некоторого усредненного человека. Такой детектор лжи получается при использовании в качестве обучающей выборки ответов нескольких человек, относящихся к различным психологическим типам.

Добыча данных (Data Mining — DM). Эта система предусматривает использование ряда технологий, например дерево решений и нейронную сеть, для того, чтобы добывать знания из крупномасштабных баз данных организации.

Система DM — это вспомогательный аппарат систем в поддержке принятия решений. Ниже приведено описание типовых применений системы Data Mining.

Применение	Описание
Рыночная сегментация	Идентифицирует общественные характеристики клиентов, которые покупают одинаковые изделия у компании
Характеристики клиентов	Предсказывает, какие клиенты, вероятно, могут оставить вашу компанию и идти к конкуренту
Обнаружение мошенничества	Идентифицирует тех, чьи действия наиболее вероятно будут мошенническими
Прямой маркетинг	Идентифицирует, какие проспекты должны быть включены в списки рассылки, чтобы получить самую высокую эффективность
Интерактивный маркетинг	Показывает индивидуумов, обращающихся к web-сайтам, как наиболее интересных для наблюдения
Анализ потребительской корзины	Предполагает, какие изделия или услуги обычно приобретаются вместе
Анализ тренда	Показывает отличия между типичным клиентом в текущем и предыдущем месяцах

Формального, научного определения понятия «естественный интеллект» не существует, в силу чего еще труднее определить понятие «искусственный интеллект». Для того чтобы решить эту задачу, необходимо уяснить значение терминов «интеллект»; «психика»; «сознание»; «разум». *Интеллект*. Различают формулировки... (Информационные системы в экономике)